Skip to content

Lesson library

Explore all 108 lessons in the Coding for MBA curriculum. Every module includes runnable notebooks and scripts so you can build skills step by step. Use the table below to jump straight to the GitHub README for any day.

Day Lesson
Day 01 πŸ“˜ Day 1: Python for Business Analytics - First Steps
Day 02 πŸ“˜ Day 2: Storing and Analyzing Business Data
Day 03 πŸ“˜ Day 3: Operators - The Tools for Business Calculation and Logic
Day 04 πŸ“˜ Day 4: Working with Text Data - Strings
Day 05 πŸ“˜ Day 5: Managing Collections of Business Data with Lists
Day 06 πŸ“˜ Day 6: Tuples - Storing Immutable Business Data
Day 07 πŸ“˜ Day 7: Sets - Managing Unique Business Data
Day 08 πŸ“˜ Day 8: Dictionaries - Structuring Complex Business Data
Day 09 πŸ“˜ Day 9: Conditionals - Implementing Business Logic
Day 10 πŸ“˜ Day 10: Loops - Automating Repetitive Business Tasks
Day 11 πŸ“˜ Day 11: Functions - Creating Reusable Business Tools
Day 12 πŸ“˜ Day 12: List Comprehension - Elegant Data Manipulation
Day 13 πŸ“˜ Day 13: Higher-Order Functions & Lambda
Day 14 πŸ“˜ Day 14: Modules - Organizing Your Business Logic
Day 15 πŸ“˜ Day 15: Exception Handling - Building Robust Business Logic
Day 16 πŸ“˜ Day 16: File Handling for Business Analytics
Day 17 πŸ“˜ Day 17: Regular Expressions for Text Pattern Matching
Day 18 πŸ“˜ Day 18: Classes and Objects - Modeling Business Concepts
Day 19 πŸ“˜ Day 19: Working with Dates and Times
Day 20 πŸ“˜ Day 20: Python Package Manager (pip) & Third-Party Libraries
Day 21 πŸ“˜ Day 21: Virtual Environments - Professional Project Management
Day 22 πŸ“˜ Day 22: NumPy - The Foundation of Numerical Computing
Day 23 πŸ“˜ Day 23: Pandas - Your Data Analysis Superpower
Day 24 πŸ“˜ Day 24: Advanced Pandas - Working with Real Data
Day 25 πŸ“˜ Day 25: Data Cleaning - The Most Important Skill in Analytics
Day 26 πŸ“˜ Day 26: Practical Statistics for Business Analysis
Day 27 πŸ“˜ Day 27: Data Visualization - Communicating Insights
Day 28 πŸ“˜ Day 28: Advanced Visualization & Customization
Day 29 πŸ“˜ Day 29: Interactive Visualization with Plotly
Day 30 πŸ“˜ Day 30: Web Scraping - Extracting Data from the Web
Day 31 πŸ“˜ Day 31: Working with Databases in Python
Day 32 πŸ“˜ Day 32: Connecting to Other Databases (MySQL & MongoDB)
Day 33 πŸ“˜ Day 33: Accessing Web APIs with requests
Day 34 πŸ“˜ Day 34: Building a Simple API with Flask
Day 35 πŸ“˜ Day 35: Flask Web Framework
Day 36 πŸ“˜ Day 36 – Capstone Case Study
Day 37 πŸ“˜ Day 37: Conclusion & Your Journey Forward
Day 38 πŸ“˜ Day 38: Math Foundations - Linear Algebra
Day 39 πŸ“˜ Day 39: Math Foundations - Calculus
Day 40 πŸ“˜ Day 40: Introduction to Machine Learning & Core Concepts
Day 41 πŸ“˜ Day 41 Β· Supervised Learning – Regression
Day 42 πŸ“˜ Day 42 Β· Supervised Learning – Classification (Part 1)
Day 43 πŸ“˜ Day 43 Β· Supervised Learning – Classification (Part 2)
Day 44 πŸ“˜ Day 44: Unsupervised Learning
Day 45 πŸ“˜ Day 45: Feature Engineering & Model Evaluation
Day 46 πŸ“˜ Day 46: Introduction to Neural Networks & Frameworks
Day 47 πŸ“˜ Day 47: Convolutional Neural Networks (CNNs) for Computer Vision
Day 48 πŸ“˜ Day 48: Recurrent Neural Networks (RNNs) for Sequence Data
Day 49 πŸ“˜ Day 49: Natural Language Processing (NLP)
Day 50 πŸ“˜ Day 50: MLOps - Model Deployment
Day 51 πŸ“˜ Day 51 – Regularised Models
Day 52 πŸ“˜ Day 52 – Ensemble Methods
Day 53 πŸ“˜ Day 53 – Model Tuning and Feature Selection
Day 54 πŸ“˜ Day 54 – Probabilistic Modeling
Day 55 πŸ“˜ Day 55 – Advanced Unsupervised Learning
Day 56 πŸ“˜ Day 56 – Time Series and Forecasting
Day 57 πŸ“˜ Day 57 – Recommender Systems
Day 58 πŸ“˜ Day 58 – Transformers and Attention
Day 59 πŸ“˜ Day 59 – Generative Models
Day 60 πŸ“˜ Day 60 – Graph and Geometric Learning
Day 61 πŸ“˜ Day 61 – Reinforcement and Offline Learning
Day 62 πŸ“˜ Day 62 – Model Interpretability and Fairness
Day 63 πŸ“˜ Day 63 – Causal Inference and Uplift Modeling
Day 64 πŸ“˜ Day 64 – Modern NLP Pipelines
Day 65 πŸ“˜ Day 65 – MLOps Pipelines and CI/CD Automation
Day 66 πŸ“˜ Day 66 – Model Deployment and Serving Patterns
Day 67 πŸ“˜ Day 67 – Model Monitoring and Reliability Engineering
Day 68 πŸ“˜ Day 68 – BI Analyst Foundations
Day 69 πŸ“˜ Day 69 – BI Strategy and Stakeholders
Day 70 πŸ“˜ Day 70 – BI Metrics and Data Literacy
Day 71 πŸ“˜ Day 71 – BI Data Landscape Fundamentals
Day 72 πŸ“˜ Day 72 – BI Data Formats and Ingestion
Day 73 πŸ“˜ Day 73 – BI SQL and Databases
Day 74 πŸ“˜ Day 74 – BI Data Preparation and Tools
Day 75 πŸ“˜ Day 75 – BI Visualization and Dashboard Principles
Day 76 πŸ“˜ Day 76 – BI Platforms and Automation Tools
Day 77 πŸ“˜ Day 77 – BI Domain Analytics and Value Drivers
Day 78 πŸ“˜ Day 78 – BI Experimentation and Predictive Insights
Day 79 πŸ“˜ Day 79 – BI Storytelling and Stakeholder Influence
Day 80 πŸ“˜ Day 80 – BI Data Quality and Governance
Day 81 πŸ“˜ Day 81 – BI Architecture and Data Modeling
Day 82 πŸ“˜ Day 82 – BI ETL and Pipeline Automation
Day 83 πŸ“˜ Day 83 – BI Cloud and Modern Data Stack
Day 84 πŸ“˜ Day 84 – BI Career Development and Capstone
Day 85 πŸ“˜ Day 85 – Advanced SQL and Performance Tuning
Day 86 πŸ“˜ Day 86 – BI in the Cloud
Day 87 πŸ“˜ Day 87 – Data Governance and Security
Day 88 πŸ“˜ Day 88 – Capstone Project - Part 1
Day 89 πŸ“˜ Day 89 – Capstone Project - Part 2
Day 90 πŸ“˜ Day 90 – Career Workshop and Next Steps
Day 91 πŸ“˜ Day 91: Relational Databases
Day 92 πŸ“˜ Day 92: Data Definition Language (DDL)
Day 93 πŸ“˜ Day 93: Data Manipulation Language (DML)
Day 94 πŸ“˜ Day 94: Data Query Language (DQL)
Day 95 πŸ“˜ Day 95: Joins
Day 96 πŸ“˜ Day 96: Subqueries
Day 97 πŸ“˜ Day 97: Views
Day 98 πŸ“˜ Day 98: Indexes
Day 99 πŸ“˜ Day 99: Transactions
Day 100 πŸ“˜ Day 100: Stored Procedures
Day 101 πŸ“˜ Day 101: Triggers
Day 102 πŸ“˜ Day 102: Common Table Expressions (CTEs)
Day 103 πŸ“˜ Day 103: Pivoting Data
Day 104 πŸ“˜ Day 104: Database Design and Normalization
Day 105 πŸ“˜ Day 105: JSON in SQL
Day 106 πŸ“˜ Day 106: XML in SQL
Day 107 πŸ“˜ Day 107: SQL Security
Day 108 πŸ“˜ Day 108: SQL Performance Tuning